Abstract
The article considers a controlled system of linear differential-difference equations with a linearly increasing delay. Sufficient conditions for the asymptotic stability of such systems are known; however, general conditions for the stabilizability of controlled systems and constructive algorithms for constructing stabilizing controls have not yet been obtained. For a linear differential-difference equation of delayed type with linearly increasing delay, the canonical Zubov transformation is applied and conditions for the stabilization of such systems by static control are derived. An algorithm for checking the conditions for the existence of a stabilizing control and for its constructing is formulated. New theorems on stability analysis of systems of linear differential-difference equations with linearly increasing delay are proven. The results obtained can be applied to the case of systems with several proportional delays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.