Abstract
This paper discusses bifurcational phenomena in a control system with pulse-width modulation of the first kind. We show that the transition from a regular dynamics to chaos occurs in a sequence of classical supercritical period doubling and border collision bifurcations. As a parameter is varied, one can observe a cascade of doubling of the cyclic chaotic intervals, which are associated with homoclinic bifurcations of unstable periodic orbits. Such transition are also refereed as merging bifurcation (known also as merging crisis). At the bifurcation point, the unstable periodic orbit collides with some of the boundaries of a chaotic attractor and as a result, the periodic orbit becomes a homoclinic. This condition we use for obtain equations for bifurcation boundaries in the form of an explicit dependence on the parameters. This allow us to determine the regions of stability for periodic orbits and domains of the existence of four-, two- and one-band chaotic attractors in the parameter plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.