Abstract

Abstract The stability and the electronic structure of ultrathin Bi/Bi2Se3 heterostructure are studied from density-functional theory by including spin–orbit coupling. Our calculations show that the thinnest and dynamically stable heterostructure is one bilayer Bi deposited on Bi2Se3 with the thickness of two quintuple layers. Due to charge transfer and the strong hybridize effect at the interface, the band structure of ultrathin heterostructure make a large change, but the Dirac-like surface states persist. Our findings propose the possibility to engineer heterostructure to obtain ultrathin topological materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.