Abstract

Transitions between the different stages of the RNAPII transcription cycle involve the recruitment and exchange of factors, including mRNA capping enzymes, elongation factors, splicing factors, 3'-end-processing complexes, and termination factors. These transitions are coordinated by the dynamic phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNAPII (Rpb1). The CTD is composed of reiterated heptapeptide repeats (Y(1)S(2)P(3)T(4)S(5)P(6)S(7)) that undergo phosphorylation and dephosphorylation as RNAPII transitions through the transcription cycle. An essential phosphatase in this process is Ssu72, which exhibits catalytic specificity for Ser(P)(5) and Ser(P)(7). Ssu72 is unique in that it is specific for Ser(P)(5) in one orientation of the CTD and for Ser(P)(7) when bound in the opposite orientation. Moreover, Ssu72 interacts with components of the initiation machinery and affects start site selection yet is an integral component of the CPF 3'-end-processing complex. Here we provide a comprehensive view of the effects of Ssu72 with respect to its Ser(P)(5) phosphatase activity. We demonstrate that Ssu72 dephosphorylates Ser(P)(5) at the initiation-elongation transition. Furthermore, Ssu72 indirectly affects the levels of Ser(P)(2) during the elongation stage of transcription but does so independent of its catalytic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.