Abstract
Benjamini, Lyons and Schramm (1999) considered properties of an infinite graph $G$, and the simple random walk on it, that are preserved by random perturbations. To address problems raised by those authors, we study simple random walk on the infinite percolation cluster in Cayley graphs of certain amenable groups known as "lamplighter groups''.We prove that zero speed for random walk on a lamplighter group implies zero speed for random walk on an infinite cluster, for any supercritical percolation parameter $p$. For $p$ large enough, we also establish the converse. We prove that if $G$ has a positive anchored expansion constant then so does every infinite cluster of independent percolation with parameter $p$ sufficiently close to 1; We also show that positivity of the anchored expansion constant is preserved under a random stretch if, and only if, the stretching law has an exponential tail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Discrete Mathematics & Theoretical Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.