Abstract

Benjamini, Lyons and Schramm [Random Walks and Discrete Potential Theory (1999) 56–84] considered properties of an infinite graph G, and the simple random walk on it, that are preserved by random perturbations. In this paper we solve several problems raised by those authors. The anchored expansion constant is a variant of the Cheeger constant; its positivity implies positive lower speed for the simple random walk, as shown by Virág [Geom. Funct. Anal. 10 (2000) 1588–1605]. We prove that if G has a positive anchored expansion constant, then so does every infinite cluster of independent percolation with parameter p sufficiently close to 1; a better estimate for the parameters p where this holds is in the Appendix. We also show that positivity of the anchored expansion constant is preserved under a random stretch if and only if the stretching law has an exponential tail. We then study a simple random walk in the infinite percolation cluster in Cayley graphs of certain amenable groups known as “lamplighter groups.” We prove that zero speed for a random walk on a lamplighter group implies zero speed for random walk on an infinite cluster, for any supercritical percolation parameter p. For p large enough, we also establish the converse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.