Abstract
BackgroundSpontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy.MethodsIn this study, we challenged SR/CR mice with additional lethal transplantable mouse cancer cell lines to determine their resistance spectrum. The ability of these transplantable cancer cell lines to induce leukocyte infiltration was quantified and the percentage of different populations of responding immune cells was determined using flow cytometry.ResultsIn comparison to wild type (WT) mice, SR/CR mice showed significantly higher resistance to all cancer cell lines tested. However, SR/CR mice were more sensitive to MethA sarcoma (MethA), B16 melanoma (B16), LL/2 lung carcinoma (LL/2) and J774 lymphoma (J774) than to sarcoma 180 (S180) and EL-4 lymphoma (EL-4). Further mechanistic studies revealed that this lower resistance to MethA and LL/2 was due to the inability of these cancer cells to attract SR/CR leukocytes, leading to tumor cell escape from resistance mechanism. This escape mechanism was overcome by co-injection with S180, which could attract SR/CR leukocytes allowing the mice to resist higher doses of MethA and LL/2. S180-induced cell-free ascites fluid (CFAF) co-injection recapitulated the results obtained with live S180 cells, suggesting that this chemoattraction by cancer cells is mediated by diffusible molecules. We also tested for the first time whether SR/CR mice were able to resist additional cancer cell lines prior to S180 exposure. We found that SR/CR mice had an innate resistance against EL-4 and J774.ConclusionsOur results suggest that the cancer resistance in SR/CR mice is based on at least two separate processes: leukocyte migration/infiltration to the site of cancer cells and recognition of common surface properties on cancer cells. The infiltration of SR/CR leukocytes was based on both the innate ability of leukocytes to respond to chemotactic signals produced by cancer cells and on whether cancer cells produced these chemotactic signals. We found that some cancer cells could escape from SR/CR resistance because they did not induce infiltration of SR/CR leukocytes. However, if infiltration of leukocytes was induced by co-injection with chemotactic factors, these same cancer cells could be effectively recognized and killed by SR/CR leukocytes.
Highlights
Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity
In the BALB/c background, all SR/CR mice survived 5 × 10e4 J774 before they began to die at higher doses, while 70% of mice challenged with 10e5 MethA survived
Our results show that SR/CR mice had significantly higher resistance to all cancer cell lines tested in comparison to wild type (WT) mice
Summary
Spontaneous regression/complete resistance (SR/CR) mice are a unique colony of mice that possess an inheritable, natural cancer resistance mediated primarily by innate cellular immunity. This resistance is effective against sarcoma 180 (S180) at exceptionally high doses and these mice remain healthy. The leukocytes of SR/CR mice can be transferred to sensitive wild-type (WT) mice for prevention and treatment of established malignancies in immune-compatible recipients without adverse side-effects [4] Another intriguing property of the resistance in SR/CR mice is that they are healthy throughout their lifespan suggesting that normal cells in these mice are not harmed by the anticancer response that targets cancer cells with exceptionally high specificity [2]. Transformed but non-cancerous cells, such as CHO or NIH-3T3, are not killed by the SR/CR leukocytes in vitro[4]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have