Abstract

Electron backscatter diffraction is a modern experimental method for local structure and texture investigation, which makes it possible to establish the presence and types of the various boundaries between the elements of the mesostructure such as low or high angle, special and interphase boundaries. Moreover, this technique can demonstrate the migration of boundaries during structural and phase transformations. This study estimated the possible spectrum of crystallographic misorientations of intercrystalline boundaries in additively manufactured titanium alloy Ti-6Al-4V using orientation microscopy and crystallographic calculations based on Burgers orientation relationship during β→α-transformation. The study has established that the boundaries between grains of α-phase are characterized by the misorientation angles of 11±2 °, 61±5 °, 89±3 °. The majority of high-angle boundaries are characterized by misorientation angles in the range of 57-65 °. The study also ascertained that the experimental spectrum of intercrystalline boundaries in the α-phase reveals the displacive nature of β→α-transformation in titanium alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.