Abstract
Assume that T is an upper triangular square matrix with entries in a unital Banach algebra. The main question studied here is: Under what conditions on the entries in T is it true that the spectrum of T is the union of the spectra of the diagonal entries of T? Also some results are proved concerning the Fredholm theroy of matrices with operator entries.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have