Abstract
X-ray Imaging Spectrometers (XIS) are the X-ray CCD cameras onboard Suzaku. They were operated in orbit from 2005 to 2015 and produced lots of findings with their good energy resolution and low non X-rat background. Precise calibration including the 10 eV accuracy in the energy scale reinforced them. Nevertheless, there has been a unresolved calibration issue in the spectral response around the Si-K edge (1.839 keV) appearing as systematic residuals up to 10%. The residual is negative peaking at 1.85 keV in the front illuminated (FI) sensors and positive peaking at 1.8 keV in the back illuminated (BI) sensor for X-ray sources dominated by continuum X-ray emission. Various attempts to eliminate these residuals by changing response parameters or quantum efficiency models have been insufficient. In this paper, we revisit this problem by focusing on the relation between incident X-ray energy and pulse height. We introduce a jump in that relation at the Si-K edge by modifying the , and optimize its value so as to minimize the residuals in the fit of the X-ray spectra for the black hole binary LMC X-3, a source dominated by continuum emission. We find the introduction of a jump significantly reduces the residuals. The optimized jump values are +4:2 channel, +4:0 channel, and -3:1 channel, corresponding to 15.3 eV, -11:3 eV, and 14.6 eV, for XIS0, XIS3 (FI), and XIS1 (BI), respectively. The direction of the jump is opposite for the FI and for the BI. We revise the response matrices generator so as to include the jump for each XIS sensor, and apply it to the X-ray spectra of the Perseus cluster of galaxies which has various emission lines in the spectra, and the blazar PKS2155-304 which was observed various epoch in the Suzakuoperation. We confirm the residuals are significantly reduced for these sources, too. We finally suggest the jump at Si-K edge in the energy and pulse height relation is qualitatively explained, if some of charges are lost in course of charger collection to the electrode of the CCD in the depletion later, and its amount is large for larger travel length in the depletion layer. If this explanation is correct, the Si-K edge problem and its solution presented in this paper is not specific only for the SuzakuXIS but also for other X-ray CCDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.