Abstract
In this paper, an unstable linear time invariant (LTI) ODE system is stabilized exponentially by the PDE compensato—a wave equation with Kelvin‐Voigt (K‐V) damping. Direct feedback connections between the ODE system and wave equation are established: The velocity of the wave equation enters the ODE through the variable vt(1,t); meanwhile, the output of the ODE is fluxed into the wave equation. It is found that the spectrum of the system operator is composed of two parts: point spectrum and continuous spectrum. The continuous spectrum consists of an isolated point , and there are two branches of asymptotic eigenvalues: the first branch approaches to , and the other branch tends to −∞. It is shown that there is a sequence of generalized eigenfunctions, which forms a Riesz basis for the Hilbert state space. As a consequence, the spectrum‐determined growth condition and exponential stability of the system are concluded.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have