Abstract
The sorption of pentavalent neptunium, Np(V), on corundum (α-Al2O3) was investigated in the absence and presence of trivalent europium or gadolinium as a competing element under CO2-free conditions. The objective of this study was to investigate how a trivalent metal ion with a higher charge than that of the neptunyl(V) ion would affect the sorption of Np(V) when allowed to adsorb on the mineral surface before the addition of Np(V). Batch sorption experiments conducted as a function of pH (pH-edges) and as a function of Np(V) concentration (isotherms) in the absence and presence of 1×10−5M Eu(III) showed no sign of Eu being able to block Np sorption sites. Surface complexation modelling using the diffuse double layer model was applied to the batch data to obtain surface complexation constants for the formed Np(V) complexes on corundum. To account for potential changes occurring in the coordination environment of the neptunium ion in the presence of a trivalent lanthanide, X-ray absorption spectroscopy (XAS) measurements were carried out on the samples containing only Np(V) and Np(V)+Gd(III). The results reveal the presence of a bidentate Np(V) edge-sharing complex on the corundum surface in the absence of Gd(III), while the coordination environment of Np(V) on the corundum surface could be changed when Gd(III) is added to the sample before the sorption of Np(V).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.