Abstract
The establishment, proliferation, and differentiation of stem cells are coordinated with organ development and regulated by the signals in the microenvironment. Prior to gonad formation, how primordial germ cells (PGC) differentiate spatiotemporally to coordinate with gonadogenesis is unclear. In adult ovary, drosophila extracellular glypican Dally in germline stem cell (GSC) niche promotes BMP signaling to inhibit germline differentiation. Here we investigated the relation between the fate of PGC and the spatiotemporal pattern of glypican during ovary development. We found that Dally in ovarian soma assisted BMP signaling to prevent PGC from precocious differentiation. Dally's presence raises the "hurdle" for ecdysone peaks to eventually remove the transcription factor Kr and de-repress pro-differentiation factor, temporally postponing PGC differentiation until GSC niche establishment. The spatiotemporal glypican in somatic matrix assists PGC to integrate the ovarian local BMP and organismal steroid signals that coordinate PGC's program with organ/body development to maximize reproductive potential.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have