Abstract

Spatial patterns of adaptation provide important insights into agents of selection and expected responses of populations to climate change. Robust inference into the spatial scale of adaptation can be gained through reciprocal transplant experiments that combine multiple source populations and common gardens. Here, we examine the spatial scale of local adaptation of the North American annual plant common ragweed, Ambrosia artemisiifolia, using data from four common gardens with 22 source populations sampled from across a ∼1200km latitudinal gradient within the native range. We found evidence of local adaptation at the northernmost common garden, but maladaptation at the two southern gardens, where more southern source populations outperformed local populations. Overall, the spatial scale of adaptation was large-at the three gardens where distance between source populations and gardens explained variation in fitness, it took an average of 820km for fitness to decline to 50% of its predicted maximum. Taken together, these results suggest that climate change has already caused maladaptation, especially across the southern portion of the range, and may result in northward range contraction over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.