Abstract

Microbial biofilms are common on lithic surfaces, including stone buildings. However, the ecology of these communities is poorly understood. Few studies have focused on the spatial characteristics of lithobiontic biofilms, despite the fact that spatial structure has been demonstrated to influence ecosystem function (and hence biodegradation) and community diversity. Furthermore, relatively few studies have utilized molecular techniques to characterize these communities, even though molecular methods have revealed unexpected microbial diversity in other habitats. This study investigated (1) the spatial structure and (2) the taxonomic composition of an epilithic biofilm using molecular techniques, namely amplicon pyrosequencing and terminal restriction fragment length polymorphism. Dispersion indices and Mantel correlograms were used to test for the presence of spatial structure in the biofilm. Diversity metrics and rank-abundance distributions (RADs) were also generated. The study revealed spatial structure on a centimetre scale in eukaryotic microbes (fungi and algae), but not the bacteria. Fungal and bacterial communities were highly diverse; algal communities much less so. The RADs were characterized by a distinctive 'hollow' (concave up) profile and long tails of rare taxa. These findings have implications for understanding the ecology of epilithic biofilms and the spatial heterogeneity of stone biodeterioration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.