Abstract

Over the past decade, neutral theory has gained attention and recognition for its capacity to explain bacterial community structure (BCS) in addition to deterministic processes. However, no clear consensus has been drawn so far on their relative importance. In a metacommunity analysis, we explored at the regional and local scale the effects of these processes on the bacterial community assembly within the water column of 49 freshwater lakes. The BCS was assessed using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA genes. At the regional scales, results indicated that the neutral community model well predicted the spatial community structure (R(2) mean = 76%) compared with the deterministic factors - which explained only a small fraction of the BCS total variance (less than 14%). This suggests that the bacterial compartment was notably driven by stochastic processes, through loss and gain of taxa. At the local scale, the bacterial community appeared to be spatially structured by stochastic processes (R(2) mean = 65%) and temporally governed by the water temperature, a deterministic factor, even if some bacterial taxa were driven by neutral dynamics. Therefore, at both regional and local scales the neutral community model appeared to be relevant in explaining the bacterial assemblage structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.