Abstract

The transition from the traditional representation of the wave field in the vertical section of an underwater sound channel as a function of depth and time to the distribution of this field in the 3D phase space “depth–angle–time” is considered. For this purpose, the method of coherent states developed in quantum theory is used. The meaning of the proposed transition is that the field intensity distribution in the specified phase space is less sensitive to sound velocity fluctuations than in the original 2D depth–time space. This fact can be used in solving inverse problems. As an example, we consider the reconstruction of the coordinates of a source in a waveguide from measurements of the field intensity distribution of this source in phase space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.