Abstract

Lens array arrangements are commonly used for the beam shaping of almost arbitrary input intensity distributions into a top-hat. The setup usually consists of a Fourier lens and two identical regular microlens arrays - often referred to as tandem lens array - where the second one is placed in the focal plane of the first microlenses. Due to the periodic structure of regular arrays the output intensity distribution is modulated by equidistant sharp intensity peaks which are disturbing the homogeneity. The equidistantly located intensity peaks can be suppressed when using a chirped and therefore non-periodic microlens array. A far field speckle pattern with more densely and irregularly located intensity peaks results leading to an improved homogeneity of the intensity distribution. In contrast to stochastic arrays, chirped arrays consist of individually shaped lenses defined by a parametric description of the cells optical function which can be derived completely from analytical functions. This gives the opportunity to build up tandem array setups enabling to achieve far field intensity distribution with an envelope of a top-hat. We propose a new concept for fly's eye condensers incorporating a chirped tandem microlens array for the generation of a top-hat far field intensity distribution with improved homogenization under coherent illumination. The setup is compliant to reflow of photoresist as fabrication technique since plane substrates accommodating the arrays are used. Considerations for the design of the chirped microlens arrays, design rules, wave optical simulations and measurements of the far field intensity distributions are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.