Abstract
A variety of aliphatic 1,3‐diols (4a–c, 5a–c, 6a–c) was synthesized from β‐hydroxy carbonyl compounds (1–3) for potential use in the solvent extraction of boron. Primary‐secondary and primary‐tertiary alcohol structures of 1,3‐diols substituted with isopropyl, isobutyl, and isopentyl groups have been demonstrated to be very efficient for the solvent extraction of boric acid from aqueous solutions. The extraction ability of 2,2,5‐trimethyl‐1,3‐hexanediol (5b) was investigated as a function of 5b concentration, solution pH, solvent properties, and stripping conditions. Extraction efficiency increased with increasing concentration of 5b, and the best extraction of boron (96.8%) was found to be at an equilibrium pH of 2 with 0.5 M of 5b. Chloroform, toluene, chlorobenzene, 2‐octanol, and n‐amyl alcohol were found to be suitable solvents for the solvent extraction of boron. The boron complex can be recovered from the organic phase by treatment with an aqueous solution of sodium hydroxide. The highest ratio (96.7%) of boron was recovered by 0.1 M of sodium hydroxide solution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have