Abstract

Quantum chemical calculations are used to estimate the equilibrium N-NO bond dissociation energies (BDEs) for 15 NO-donor molecules in acetonitrile. These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6-31G** basis set. The basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) are considered. The results are compared with the available experimental results. It is demonstrated that B3LYP/6-31G** is accurate to compute the reliable BDEs for the NO-donor molecules. The solvent effects on the N-NO BDEs are analysed and the result shows that the N-NO BDEs in a vacuum computed by B3P86/6-31G** method are the closest to the computed values in acetontrile and the average solvent effect is 0.78 kcal/mol. Subsequently, the substituent effects on the N-NO BDEs are further analysed and it is found that electron donating group stabilizes the radical and as a result BDE decreases; whereas electron withdrawing group stabilizes the ground state of the molecule and thus increases the BDE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.