Abstract
AbstractQuantum chemical calculations are used to estimate the equilibrium CNO bond dissociation energies (BDEs) for eight XNO molecule (X = CCl3, C6F5, CH3, CH3CH2, iC3H7, tC4H9, CH2CHCH2, and C6H5CH2). These compounds are studied by employing the hybrid density functional theory (B3LYP, B3PW91, B3P86) methods together with 6‐31G** and 6‐311G** basis sets and the complete basis set (CBS‐QB3) method. The obtained results are compared with the available experimental results. It is demonstrated that B3P86/6‐31G** and CBS‐QB3 methods are accurate for computing the reliable BDEs for the XNO molecule. Considering the inevitably computational cost of CBS‐QB3 method and the reliability of the B3P86 calculations, B3P86 method with 6‐31G** basis set may be more suitable to calculate the BDEs of the CNO bond. The solvent effects on the BDEs of the CNO bond are analyzed and it is shown that the CNO BDEs in a vacuum computed by using B3PW91/6‐311G** method are the closest to the computed values in acetontrile and the average solvent effect is 1.48 kcal/mol. Subsequently, the substituent effects of the BDEs of the CNO bond are further analyzed and it is found that electron denoting group stabilizes the radical and as a result BDE decreases; whereas electron withdrawing group stabilizes the group state of the molecule and thus increases the BDE from the parent molecule. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.