Abstract

All previous Brayton cycle engines have utilized a separate compressor and expander and thus have been limited in temperature on the expander side. To overcome this limitation, the author has designed a new, rotary positive displacement Brayton type engine in which each mechanism both compresses and expands the working fluid. Since each mechanism goes from cold to hot and back to cold, the material will remain at approximately the mean temperature of the compressed and expanded gas. Thus much higher temperatures can be used—with much less expensive materials. The mechanism is also unique in that the rotor is offset from the center of the stator so that the expansion volume is greater than the compression volume. Computer simulation indicates that the overall efficiency of the engine will be 57%, weight will be 4.4482 N/bhp (11b/bhp), and emissions of HC and CO lower than any proposed standard. The engine promises twice the fuel economy, half the maintenance, and three-fourths the first cost of the conventional Otto cycle engine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.