Abstract
The adhesin NadA favors cell adhesion/invasion by hypervirulent Neisseria meningitidis B (MenB). Its recombinant form NadAΔ351–405, devoid of the outer membrane domain, is an immunogenic candidate for an anti-MenB vaccine able to stimulate monocytes, macrophages and dendritic cells. In this study we investigated the molecular mechanism of NadAΔ351–405 cellular effects in monocytes. We show that NadAΔ351–405 (against which we obtained polyclonal antibodies in rabbits), binds to hsp90, but not to other extracellular homologous heat shock proteins grp94 and hsp70, in vitro and on the surface of monocytes, in a temperature dependent way. Pre-incubation of monocytes with the MenB soluble adhesin interfered with the binding of anti-hsp90 and anti-hsp70 antibodies to hsp90 and hsp70 at 37°C, a condition in which specific cell-binding occurs, but not at 0°C, a condition in which specific cell-binding is very diminished. Conversely, pre-incubation of monocytes with anti-hsp90 and anti-hsp70 antibodies did not affected NadAΔ351–405 cell binding in any temperature condition, indicating that it associates to another receptor on their plasma membrane and then laterally diffuses to encounter hsp90. Consistently, polymixin B interfered with NadAΔ351–405 /hsp90 association, abrogated the decrease of anti-hsp90 antibodies binding to the cell surface due to NadAΔ351–405 and inhibited adhesin-induced cytokine/chemokine secretion without affecting monocyte-adhesin binding. Co-stimulation of monocytes with anti-hsp90 antibodies and NadAΔ351–405 determined a stronger but polymixin B insensitive cell activation. This indicated that the formation of a recombinant NadA/hsp90/hsp70 complex, although essential for full monocyte stimulation, can be replaced by anti-hsp90 antibody/hsp90 binding. Finally, the activation of monocytes by NadAΔ351–405 alone or in the presence of anti-hsp90 antibodies were both inhibited by neutralizing anti-TLR4 antibodies, but not by anti-TLR2 antibodies. We propose that hsp90-dependent recruitment into an hsp90/hsp70/TLR4 transducing signal complex is necessary for the immune-stimulating activity of NadAΔ351–405 anti-MenB vaccine candidate.
Highlights
Neisseria meningitidis is a principal cause of sudden death for septic shock and meningitidis [1], [2]
NadAD351–405 binds to hsp90 Proteins solubilized from human monocytes with TX-100 were separated by SDS-PAGE, blotted on nitrocellulose and incubated or not with purified NadAD351–405
We propose that NadAD351–405 interaction with extracellular, plasma membrane bound, constitutive hsp90 is a requisite for the following monocyte secretion of cytokines and chemokines
Summary
Neisseria meningitidis is a principal cause of sudden death for septic shock and meningitidis [1], [2]. Hypervirulent meningococcal B serotypes, mostly responsible for infections occurring in developed countries, often express the Oligomeric Coiled-coil Adhesin (OCA) NadA (Neisseria meningitidis Adhesin A) [3], [4]. The 45 KDa NadA polypeptide assembles in trimers expected to form a super-molecular array on the bacterial surface, to other homologous OCA adhesins [6]. A soluble recombinant deletion mutant of NadA (NadAD351–405), retaining a native-oligomeric conformation, has been shown to be an effective immunogen in animal models, inducing bactericidal antibodies. NadAD351–405 is at present one of the component of a multivalent anti-Men B vaccine under development [7]. Expression of NadA on E. coli determines an increase bacterial adhesion to and invasion of conjunctival cells, while its presence on N. meningitidis seems to increase epithelial cell invasion prevalently [5]
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have