Abstract
Soluble melanin precursors are present in serum and may act as skin chromophores contributing to UVR-induced oxidative damage. Our study aimed to determine whether the soluble eumelanin precursor 5,6-dihydroxy-indole-2-carboxylic acid (DHICA) photosensitizes DNA damage in human keratinocytes exposed to UVA irradiation. The HaCaT keratinocytes were incubated with and without DHICA, before irradiation with broadband UVA (320-400 nm). The DNA photodamage was assessed using the comet assay that detects frank single-strand breaks (SSB) and specific oxidative lesions with the addition of endonuclease III. Without DHICA incubation, there was no significant increase in SSB, compared to unirradiated cells, for doses up to 48.5 J/cm2 (< 1 minimum erythemal dose). Preincubation with 0.5 microM DHICA caused an increase in SSB at every UVA dose (significant from 12.1 to 48.5 J/cm2), while varying the DHICA concentration (0.125-2 microM) showed this effect to be concentration dependent such that SSB increased and endonuclease III-sensitive sites decreased with increasing DHICA concentration. The irradiation of cells in the presence of antioxidants (catalase, mannitol and histidine) suggests that DHICA-induced photosensitization is mediated via singlet oxygen and, to a lesser extent, hydroxyl radicals. These results indicate that DHICA can induce strand breaks with UVA at clinically relevant doses via a mechanism involving reactive oxygen species.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have