Abstract

The fundamental vibrational bending mode ν2 of disulfur monoxide, S2O, and the associated hot band 2ν2-ν2 have been observed at high spectral resolution for the first time at the SOLEIL synchrotron facility using Fourier-transform far-infrared spectroscopy. This transient species has been produced in a radio-frequency discharge by flowing SO2 over elemental sulfur. The spectroscopic analysis has been performed using the newly developed Automated Spectral Assignment Procedure (ASAP) which has enabled the accurate determination of more than 3500 energy levels of the v2=1and2 vibrational states. The procedure provides a fast and convenient way to analyze large data sets in a straightforward manner, if one of the two vibrational states involved in the transition is accurately known from prior work. In addition to the high-resolution synchrotron study, pure rotational spectra of S2O in the v2=1 and 2 vibrational states were observed in the frequency range 250–500GHz by absorption spectroscopy in a long-path absorption cell. From these combined measurements, extensive molecular parameter sets have been determined, including full sets of sextic and two octic centrifugal distortion terms. Highly accurate band centers (to better than 10-5cm−1) have been derived for both vibrational bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.