Abstract

In this paper, a series of rare-earth-doped barium hexaferrite powders ( Ba 0.95 Re 0.05- Fe 12 O 19 and Ba 0.95 Re 0.05 M 0.05 Fe 11.95 O 19: Re = La , Pr , Sm , Nd , Gd , Dy , Yb ; M = Zn 2+, Mn 2+, [Formula: see text]) were synthesized by the sol–gel self-combustion technology. The phase composition and the magnetic properties of the as-prepared barium hexaferrites were characterized and discussed with X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). The results showed that the barium hexaferrites exhibited the magnetoplumbite phase structure with the average diameter of 45 nm. Magnetic properties study revealed that the variation of the saturation magnetization (Ms) was similar with the change of the rare-earth ions radius, but the change of Ms was low. This indicated that the magnetic moments of rare-earth ions could not affect Ms. The magnetocrystalline anisotropy field mainly influenced the anisotropism of hexaferrites, and the coercivity (Hc) of the rare-earth ions doped barium hexaferrites basically decreased with the increasing orbital quantum numbers (except Sm 3+ and Gd 3+). Further study showed the co-addition of Zn 2+ and Mn 2+ did not change the trend of Ms and Hc. Thus, it is concluded that the rare-earth ions played an important role for the anisotropy field of barium hexaferrites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call