Abstract

In pathological conditions, oxidative burst generates hyaluronan (HA) fragmentation with a consequent increase in the number of small HA oligosaccharides. These fragments are able to stimulate an inflammatory response in different cell types by activating the CD44 and the toll-like receptors 4 (TLR-4) and 2 (TLR-2). The stimulation of CD44 and TLRs in turn activates the NF-kB which induces the production of several pro-inflammatory mediators that amplify and perpetuate inflammation. We aimed to study the antioxidant effect of the SOD mimic, synthetic manganese porphyrin, Mn(III) 5,10,15,20-tetrakis(N-methylpyridinium-2-yl)porphyrin (MnTM-2-PyP5+) on preventing HA degradation in mouse articular chondrocytes stimulated with Fe (II) plus ascorbate. Fe (II) plus ascorbate stimulation induced oxidative burst confirmed by high levels of hydroxyl radical/peroxynitrite production, increased lipid peroxidation and HA degradation. HA fragments highly induced mRNA expression and the related protein production of CD44, TLR-4 and TLR-2, NF-kB activation and significantly up-regulated the inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), and other pro-inflammatory mediators, i.e. matrix metalloprotease 13 (MMP-13) and inducible nitric oxide synthase (iNOS). Treatment of cells with MnTM-2-PyP5+was able to attenuate oxidative burst, HA degradation and NF-kB activation, and markedly decreased mRNA expression of CD44, and TLRs and the related protein synthesis, as well as the levels of up-regulated inflammatory mediators. Adding a specific HA-blocking peptide (PEP-1) to cells significantly reduced all the inflammatory parameters up-regulated by Fe (II) plus ascorbate, and increased MnTM-2-PyP(5+) activity. These findings suggest that HA degradation plays a key role in the initial inflammatory response of cartilage and antioxidants and could be a useful tool to prevent the propagation of this mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.