Abstract

Small degradation fragments of hyaluronan (HA) may stimulate an inflammatory response in a variety of tissues at the injury site. HA oligosaccharides are endogenous ligands for the cluster determinant 44 (CD44) receptor as well as for toll-like receptor 4 (TLR-4). Previous data have shown that HA fragments may induce pro-inflammatory cytokine expression by interacting with both the CD44 receptor and TLR-4. CD44 and TLR-4 stimulation activates different inflammatory pathways that culminate with the activation of the transcriptional nuclear factor kappaB (NF-κB) which is responsible for the expression of inflammation mediators such as tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β). The aim of this study was to investigate the inflammatory effects of very small HA oligosaccharides on both TLR-4 and CD44 involvement in normal human articular chondrocytes. Adding HA fragments to chondrocyte cultures up-regulated CD44 and TLR-4 expression, activated NF-κB translocation and increased the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. The addition of a specific CD44 blocking antibody reduced CD44 and all inflammatory cytokine expression as well as protein production. However, cytokine expression remained significantly higher than in untreated chondrocytes. TLR-4 expression was not affected. The treatment with TLR-4 blocking antibody decreased TLR-4 and inflammatory cytokine expression, although cytokine expression was significantly higher than in control cells. CD44 expression was unaffected. The addition of both CD44 and TLR-4 blocking antibodies significantly reduced CD44, TLR-4 and inflammatory cytokine expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.