Abstract
Exocytosis of the hormone glucagon-like peptide 1 (GLP-1) by the intestinal L cell is essential for the incretin effect after nutrient ingestion and is critical for the actions of dipeptidyl peptidase 4 inhibitors that enhance GLP-1 levels in patients with type 2 diabetes. Two-photon microscopy revealed that exocytosis of GLP-1 is biphasic, with a first peak at 1-6 min and a second peak at 7-12 min after stimulation with forskolin. Approximately 75% of the exocytotic events were represented by compound granule fusion, and the remainder were accounted for by full fusion of single granules under basal and stimulated conditions. The core SNARE protein syntaxin-1a (syn1a) was expressed by murine ileal L cells. At the single L-cell level, first-phase forskolin-induced exocytosis was reduced to basal (P < 0.05) and second-phase exocytosis abolished (P < 0.05) by syn1a knockout. L cells from intestinal-epithelial syn1a-deficient mice demonstrated a 63% reduction in forskolin-induced GLP-1 release in vitro (P < 0.001) and a 23% reduction in oral glucose-stimulated GLP-1 secretion (P < 0.05) in association with impairments in glucose-stimulated insulin release (by 60%; P < 0.01) and glucose tolerance (by 20%; P < 0.01). The findings identify an exquisite mechanism of metered secretory output that precisely regulates release of the incretin hormone GLP-1 and hence insulin secretion after a meal.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have