Abstract
To smooth noises inherent in uniformly sampled dataset, the smoothness of high accuracy surface modeling (HASM) was explored, and a smoothing method of HASM (HASM-SM) was developed based on a penalized least squares method. The optimal smoothing parameter of HASM-SM was automatically obtained by means of the generalized cross-validation (GCV) method. For an efficient smoothing computation, discrete cosine transform was employed to solve the system of HASM-SM and to estimate the minimum GCV score, simultaneously. Two examples including a numerical test and a real-world example were employed to compare the smoothing ability of HASM-SM with that of GCV thin plate smoothing spline (TPS) and kriging. The numerical test indicated that the minimum GCV HASM-SM is averagely more accurate than TPS and kriging for noisy surface smoothing. The real-world example of smoothing a lidar-derived Digital Elevation Model (DEM) showed that HASM-SM has an obvious smoothing effect, which is on a par with TPS. In conclusion, HASM-SM provides an efficient tool for filtering noises in grid-based surfaces like remote sensing–derived images and DEMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Geographical Information Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.