Abstract

MicroRNA-212 has been found to play an important role in several types of diseases, but the functional and potential mechanisms of microRNA-212 in ischemic brain injury are still unclear. The aims of this study were to investigate the potential role of microRNA-212 in ischemic brain injury and to reveal potential molecular mechanisms. The rat oxygen-glucose deprivation and simulated reperfusion model was established to study the role of microRNA-212 in ischemic brain injury. The expression of microRNA-212 in oxygen-glucose deprivation and simulated reperfusion model and its effect on cell proliferation were measured by quantitative reverse transcription PCR and Cell Counting Kit-8 assay, respectively. The relationships between microRNA-212 and sirtuin 2 were confirmed by luciferase-reporter assay. We observed that microRNA-212 was downregulated after oxygen-glucose deprivation and simulated reperfusion treatment. Besides, the cells viabilities were increased/decreased in oxygen-glucose deprivation and simulated reperfusion model after transfection with microRNA-212 agomir (agonist of microRNA-212 action) and microRNA-212 antagomir (inhibitor of microRNA-212 action). In addition, luciferase and western blot experiments showed that microRNA-212 directly regulated sirtuin 2 changes. Furthermore, promotion of neuronal survival by microRNA-212 was blocked by overexpression of sirtuin 2, whereas the neuronal death induced by microRNA-212 inhibition was rescued by sirtuin 2 inhibition. Taken together, our study revealed that the role of miR-212 in the modulation of ischemic brain injury might be achieved by regulating sirtuin 2, which provides potential biomarkers and candidates for the treatment of cerebral ischemia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.