Abstract

IntroductionThis study aims to determine the relationship between the granulocyte colony-stimulating factor (G-CSF) and the Notch signaling pathway in ischemic brain injury.Material and methodsPC-12 cells were treated with the nerve growth factor (NGF) to induce neuronal differentiation then divided into seven groups: 1) no treatment (control); 2) oxygen-glucose deprivation (OGD) model; 3) overexpressed G-CSF + OGD model; 4) transfected empty vector (negative control; NC) + OGD model; 5) overexpressed G-CSF + γ-secretase inhibitor MW167 + OGD model; 6) MW167 + OGD model; and 7) NC + MW167 + OGD model. The cells were analyzed using immunohistochemistry and apoptosis and CCK8 assays. The expression of the related molecules in the Notch pathway was detected using the Western blotting and quantitative PCR (Q-PCR).ResultsMost PC-12 cells were neuron-specific enolase (NSE)-positive after the NGF treatment. When compared with the control group, the MW167 + OGD and NC + MW167 + OGD groups had the lowest optical density (OD) values, followed by the OGD, NC + OGD and the G-CSF + MW167+ OGD groups. The G-CSF + OGD group had the highest OD value. Concerning apoptosis detection, the control group had the lowest apoptosis rate. The highest apoptosis rates were found in the MW167 + OGD, the OGD, and then the G-CSF + OGD groups.ConclusionsThe blocking of the Notch pathway can attenuate the G-CSF effects, whereas the G-CSF overexpression can activate the Notch pathway to resist the effects of oxygen-glucose deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.