Abstract

AbstractThe Kepler Mission has discovered thousands of planets with radii <4 R ⊕, paving the way for the first statistical studies of super-Earth dynamics, formation, and evolution. These calculations often require planetary masses, and yet the vast majority of Kepler planet candidates do not have theirs measured. A key concern is therefore how to map the measured radii to mass estimates in a size range that lacks Solar System analogs. While previous works have derived one-to-one relationships between radius and mass, a realistic mass-radius (M-R) relation should account for the range of compositions that we expect within the population. This compositional diversity creates astrophysical scatter in the relation, which we quantify here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.