Abstract

The population of small, close-in exoplanets is bifurcated into super-Earths and sub-Neptunes. We calculate physically motivated mass–radius relations for sub-Neptunes, with rocky cores and H/He-dominated atmospheres, accounting for their thermal evolution, irradiation, and mass loss. For planets ≲10 M ⊕, we find that sub-Neptunes retain atmospheric mass fractions that scale with planet mass and show that the resulting mass–radius relations are degenerate with results for “water worlds” consisting of a 1:1 silicate-to-ice composition ratio. We further demonstrate that our derived mass–radius relation is in excellent agreement with the observed exoplanet population orbiting M dwarfs and that planet mass and radii alone are insufficient to determine the composition of some sub-Neptunes. Finally, we highlight that current exoplanet demographics show an increase in the ratio of super-Earths to sub-Neptunes with both stellar mass (and therefore luminosity) and age, which are both indicative of thermally driven atmospheric escape processes. Therefore, such processes should not be ignored when making compositional inferences in the mass–radius diagram.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.