Abstract

In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a no-slip surface ascending through a Newtonian fluid that has strongly temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes, in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ∊. Severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this with the help of a finite-element method. Both asymptotic and numerical results are also compared with those obtained recently for the case of a spherical body having a zero-traction surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.