Abstract
In this paper, we revisit, both asymptotically and numerically, the problem of a hot buoyant spherical body with a zero-traction surface ascending through a Newtonian fluid that has temperature-dependent viscosity. Significant analytical progress is possible for four asymptotic regimes in terms of two dimensionless parameters: the Péclet number, Pe, and a viscosity variation parameter, ϵ. Even for mild viscosity variations, the classical isoviscous result due to Levich is found to hold at leading order. More severe viscosity variations lead to an involved asymptotic structure that was never previously adequately reconciled numerically; we achieve this successfully with the help of a finite-element method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.