Abstract

The \emph{slow-coloring game} is played by Lister and Painter on a graph $G$. Initially, all vertices of $G$ are uncolored. In each round, Lister marks a nonempty set $M$ of uncolored vertices, and Painter colors a subset of $M$ that is independent in $G$. The game ends when all vertices are colored. The score of the game is the sum of the sizes of all sets marked by Lister. The goal of Painter is to minimize the score, while Lister tries to maximize it. We provide strategies for Painter on various classes of graphs whose vertices can be partitioned into a bounded number of sets inducing forests, including $k$-degenerate, acyclically $k$-colorable, planar, and outerplanar graphs. For example, we show that on an $n$-vertex graph $G$, Painter can keep the score to at most $\frac{3k+4}4n$ when $G$ is $k$-degenerate, $3.9857n$ when $G$ is acyclically $5$-colorable, $3n$ when $G$ is planar with a Hamiltonian dual, $\frac{8n+3m}5$ when $G$ is $4$-colorable with $m$ edges (hence $3.4n$ when $G$ is planar), and $\frac73n$ when $G$ is outerplanar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.