Abstract

The Ramsey game we consider in this paper is played on an unbounded set of vertices by two players, called Builder and Painter. In one move Builder introduces a new edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed target graph $H$, keeping the constructed graph in a prescribed class ${\cal G}$. The main problem is to recognize the winner for a given pair $H,{\cal G}$. In particular, we prove that Builder has a winning strategy for any $k$-colorable graph $H$ in the game played on $k$-colorable graphs. Another class of graphs with this strange self-unavoidability property is the class of forests. We show that the class of outerplanar graphs does not have this property. The question of whether planar graphs are self-unavoidable is left open. We also consider a multicolor version of Ramsey on-line game. To extend our main result for $3$-colorable graphs we introduce another Ramsey type game, which seems interesting in its own right.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.