Abstract
10–60 nm-sized mesoporous silica particles with ordered or worm-like pore structures were controllably synthesized in extremely dilute surfactant solution, and the lowest concentrations of TEOS and CTAB were 12.45 mM, 1.52 mM, respectively. The synthesis of nanometer-sized Al-incorporated mesoporous silica particles (Al-MS) was also performed under the similar conditions. Compared to the mesoporous silica without doping of aluminum, those Al-incorporated silica particles have a certain textural mesoporosity. The results indicate that the size and pore structure of mesoporous silica can be adjusted by changing the concentration of reactants. The mesoporous silica nanoparticles, including Al-MS, were characterized by transmission electron microscopy (TEM), small-angle X-ray diffraction (SAXRD), as well as nitrogen adsorption/desorption techniques. It was suggested that the formation of the mesoporous silica nanoparticles could be attributed to the deposition of self-assembled silicate micelles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.