Abstract

We consider partitions of the positive integernwhose parts satisfy the following condition. For a given sequence of non-negative numbers {bk}k≥1, a part of sizekappears in exactlybkpossible types. Assuming that a weighted partition is selected uniformly at random from the set of all such partitions, we study the asymptotic behaviour of the largest partXn. LetD(s)=∑k=1∞bkk−s,s=σ+iy, be the Dirichlet generating series of the weightsbk. Under certain fairly general assumptions, Meinardus (1954) obtained the asymptotic of the total number of such partitions asn→∞. Using the Meinardus scheme of conditions, we prove thatXn, appropriately normalized, converges weakly to a random variable having Gumbel distribution (i.e., its distribution function equalse−e−t, −∞<t<∞). This limit theorem extends some known results on particular types of partitions and on the Bose–Einstein model of ideal gas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.