Abstract

Abstract Efficient processes with organic fluids are becoming increasingly important. The high tech fluid Novec™ is such an organic fluid and is used, for example, as a coolant for highperformance electronics, low-temperature heat transfer applications, cooling of automotive batteries, just to mention a few. Thus, efficient designed fans for the transport of organic fluids are becoming more and more important in the process engineering. CFD-simulations are nowadays integral part of the design and optimization process of fans. For air at the most usual application conditions, i.e. no extreme temperatures or pressures, the ideal gas model is in good agreement with the real gas approach. In the present study, this real gas approach for organic fluids have been investigated with CFD methods and, the deviation from the ideal gas model has been analyzed. For this purpose, a simulation model of a centrifugal fan with volute has been designed as a test case. First, the ideal gas model approach has been compared with the real gas approach model of Peng-Robinson for air using the commercial solver ANSYS CFX. Thereafter, the same comparison has been performed using the organic fluid Novec™. After a detailed grid study, the entire fan characteristics, i.e. the design point and the off-design points, have been simulated and evaluated for each fluid (air and Novec™) and gas model (ideal gas and Peng-Robinson real gas). The steady state simulations of the centrifugal fan have been performed using the Frozen Rotor model. The simulation results have been compared, discussed and presented in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call