Abstract
Two texture contrast soils were cultivated by deep ripping when they were drier than their lower plastic limits. The size distribution and soil horizon-of-origin of the resulting fragments were measured. One soil, a transitional red-brown earth, had either been previously uncultivated below the A horizon or had been deep ploughed and gypsum added two years previously. There was much fragmentation and mixing of soil from both of the horizons. Fine soil (<2 mm diam.) from the A horizon reached the lower depths of the trough made by the ripping and coarse soil from the B horizon (>50 mm) was brought to near the surface. The fragment size distributions were characteristically bimodal. Fragments of the fine mode (<2 mm) came mainly from the A horizon, fragments of the coarse mode (11-25 mm or larger) came mainly from the B horizon. In the laboratory, clods from the deep ripped soil were crushed at the same low water potential (air dry). The crushing energy per unit mass (specific crushing energy) was inversely proportional to the normalized geometric mean diameter of the fragments produced. Suggestions are made for modelling the effects of deep ripping.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.