Abstract

We consider the relationship between size and depth for layered Boolean circuits, synchronous circuits and planar circuits as well as classes of circuits with small separators. In particular, we show that every layered Boolean circuit of size s can be simulated by a layered Boolean circuit of depth $O(\sqrt{s\log s})$. For planar circuits and synchronous circuits of size s, we obtain simulations of depth $O(\sqrt{s})$. The best known result so far was by Paterson and Valiant [16], and Dymond and Tompa [6], which holds for general Boolean circuits and states that D(f)=O(C(f)/logC(f)), where C(f) and D(f) are the minimum size and depth, respectively, of Boolean circuits computing f. The proof of our main result uses an adaptive strategy based on the two-person pebble game introduced by Dymond and Tompa [6]. Improving any of our results by polylog factors would immediately improve the bounds for general circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.