Abstract
Fabric transitions can arise in materials such as quartz in which more than one set of symmetrically equivalent glide systems must be considered. The external conditions, such as temperature and stress, affect the relative ability of different mechanisms to operate. Adopting the Taylor-Bishop-Hill analysis allows an approximation to the resulting effects in the choice of critical resolved shear stress (CRSS) values for glide on the different dislocation systems. Different CRSS values may be appropriate to simulating fabric development in different deformational environments. For any specific set of CRSS values, for a particular deformation, a set of reorientation trajectories can be defined for differently oriented crystals with respect to the instantaneous stretching axes. There is a basic number of pattern types, and deformation leads to c-axes populating specific end-orientations. The CRSS values on different glide systems can vary smoothly relative to one another, but abrupt changes result in the deformation fabrics at critical CRSS ratios. Quartz fabrics may thus be used to delineate regions subjected to particular conditions of temperature and strain-rate in deformed metamorphic terrains, provided that allowance can be made for other factors such as trace impurity content of quartz.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have