Abstract

We study the effects due to mismatches in passbands, polarization angles, and temperature and polarization calibrations in the context of the upcoming cosmic microwave background experiment Simons Observatory (SO). Using the SO multi-frequency likelihood, we estimate the bias and the degradation of constraining power in cosmological and astrophysical foreground parameters assuming different levels of knowledge of the instrumental effects. We find that incorrect but reasonable assumptions about the values ofall the systematics examined here can have significant effects on cosmologicalanalyses, hence requiring marginalization approaches at the likelihood level.When doing so, we find that the most relevant effect is due to bandpass shifts. When marginalizing over them, the posteriors of parameters describing astrophysical microwave foregrounds (such as radio point sources or dust) get degraded, while cosmological parameters constraints are not significantly affected.Marginalization over polarization angles with up to 0.25° uncertainty causes an irrelevant bias ≲ 0.05 σ in all parameters.Marginalization over calibration factors in polarization broadens the constraints on the effective number of relativistic degrees of freedom Neff by a factor 1.2, interpreted here as a proxy parameter for non standard model physics targeted by high-resolution CMB measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.