Abstract

Gravitational lensing by massive galaxy clusters distorts the observed cosmic microwave background (CMB) on arcminute scales, and these distortions carry information about cluster masses. Standard approaches to extracting cluster mass constraints from the CMB cluster lensing signal are either sub-optimal, ignore important physical or observational effects, are computationally intractable, or require additional work to turn the lensing measurements into constraints on cluster masses. We apply simulation based inference (SBI) using neural likelihood models to the problem. We show that in circumstances where the exact likelihood can be computed, the SBI constraints on cluster masses are in agreement with the exact likelihood, demonstrating that the SBI constraints are close to optimal. In scenarios where the exact likelihood cannot be feasibly computed, SBI still recovers unbiased estimates of individual cluster masses and combined constraints from multiple clusters. SBI will be a powerful tool for constraining the masses of galaxy clusters detected by future cosmic surveys. Code to run the analyses presented here will be made publicly available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.