Abstract
In this paper, we investigate the properties of the largest signless Laplacian spectral radius in the set of all simple connected graphs with a given degree sequence. These results are used to characterize the unicyclic graphs that have the largest signless Laplacian spectral radius for a given unicyclic graphic degree sequence. Moreover, all extremal unicyclic graphs having the largest signless Laplacian spectral radius are obtained in the sets of all unicyclic graphs of order n with a specified number of leaves or maximum degree or independence number or matching number.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have