Abstract
In the present work, simonkolleite powder consisting of Zn5(OH)8Cl2·H2O composition was proposed as a new candidate material for the healing of deep wounds in a moist environment. The powder was synthesized using a solution process and evaluated for wound-healing effects in rats. The pH value of physiological saline at 37 °C using the simonkolleite powder was 7.27, which was the optimal pH value for keratinocyte and fibroblast proliferation (range: 7.2-8.3). The amount of Zn2+ ions sustainably released from simonkolleite powder into physiological saline was 404 mmol/L below cytotoxic ion concentrations (<500 mmol/L), and the rhombohedral simonkolleite was accordingly converted to monoclinic Zn5(OH)10·2H2O. To evaluate the wound-healing effect of simonkolleite powder, the powder was applied to a full-thickness surgical wound reaching the subcutaneous tissue in the rat's abdomen. The histological analysis of the skin tissues collected after 1, 2, and 4 weeks found that angiogenesis, collagen deposition, and maturation were notedly accelerated due to the Zn2+ ions released from simonkolleite powder. The simonkolleite regenerated collagen close to autologous skin tissue after 4 weeks. The hair follicles, one of the skin appendages, were observed on the regenerative skin in the simonkolleite group at 4 weeks but not in the control group. Therefore, simonkolleite was hypothesized to stimulate the early regeneration of skin tissue in a moist environment, compared with commercial wound dressing material. These results suggested that simonkolleite could offer great potential as new wound dressing material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.