Abstract

Nucleocapsids of herpesviruses originate in the nucleus of host cells and bud through the inner nuclear membrane acquiring tegument and envelope. The release of the enveloped virus particle from the perinuclear space is unknown. Cryobased electron microscopic imaging revealed enveloped virus particles within cisterns associated with the perinuclear space, a pre-Golgi compartment connecting Golgi cisterns to the perinuclear space, and enveloped virus particles in Golgi cisterns where they are packaged into transport vacuoles by membrane fission. To our knowledge, our images show for the first time the connectivity from the perinuclear space to Golgi cisterns. The data strongly indicate an intracisternal transport of enveloped virus particles from the budding site to the packaging site. Budding starts by condensation at the inner membrane. Condensation involving the viral envelope and peripheral tegument was persistent in virus particles within perinuclear space and associated cisterns. Virus particles within Golgi cisterns and transport vacuoles originating by Golgi membrane fission, however, lacked condensation. Instead, spikes were clearly evident. The phenomenon of condensation is considered likely to be responsible for preventing fusion of the viral envelope with cisternal membranes and/or for driving virions from the perinuclear space to Golgi cisterns. Glycoprotein K is discussed to likely play a role in the intracisternal transportation of virions. In addition to the pathway including intracisternal transport and packaging, there were clear indications for the well-known pathway involving wrapping of cytoplasmic nucleocapsids by Golgi membranes. The origin of the cytoplasmic nucleocapsids, however, remains obscure. Lack of evidence for release of nucleocapsids at the outer nuclear membrane suggests that the process is very rapid, or that nucleocapsids pass the nucleocytoplasmic barrier via an alternative route.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.