Abstract
The ability of acidophilic bacteria to grow in the presence of elevated concentrations of cationic transition metals, though varying between species, has long been recognized to be far greater than that of most neutrophiles. Conversely, their sensitivity to both inorganic and organic anions, with the notable exception of sulfate, has generally been considered to be far more pronounced. We have compared the tolerance of different species of mineral-oxidizing Acidithiobacillus and Sulfobacillus, and the heterotrophic iron-reducer Acidiphilium cryptum, to copper and chloride when grown on ferrous iron, hydrogen or glucose as electron donors at pH values between 2.0 and 3.0. While tolerance of copper varied greatly between species, these were invariably far greater at pH 2.0 than at pH 3.0, while their tolerance of chloride showed the opposite pattern. The combination of copper and chloride in liquid media appeared to be far more toxic than when these elements were present alone, which was thought to be due to the formation of copper–chloride complexes. The results of this study bring new insights into the understanding of the physiological behaviour of metal-mobilising acidophilic bacteria, and have generic significance for the prospects of bioleaching copper ores and concentrates in saline and brackish waters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.